
 

1 [Determination of Potential Impact Radius for CO2 Pipelines using Machine Learning Approach] 

CAAP Quarterly Report 

September 25, 2024 

 

Project Name: Determination of Potential Impact Radius for CO2 Pipelines using Machine 
Learning Approach 

Contract Number: 693JK32250011CAAP 

Prime University: Texas A&M University 

Prepared By: Sam Wang, qwang@tamu.edu, 979-845-9803  

Reporting Period: 6/27/2024 – 9/26/2024 

 

Project Activities for Reporting Period: 

The following relevant tasks in the proposal have been completed: 

• Studied the time for the scenario of concern to reach steady state. More details are 
provided in the appendix. 

• Built machine learning models for all the geometries and concentrations to predict PIRs 
with CO2 concentrations of 1%, 4%, and 9%. More details are provided in the appendix. 

 

Project Financial Activities Incurred during the Reporting Period: 

Based on the proposed budget, the cost is broken down into two parts: 

• Efforts from the PI Dr. Wang for about 0.25 month. 
• Efforts and work by graduate students, Chi-Yang Li and Jazmine Aiya D. Marquez, 

totally for about 3 months for each of them. 

 

Project Activities with Cost Share Partners: 

Dr. Wang’s time and efforts (0.12 month) in this quarterly period are used as cost share. He 
devoted his time to supervise the graduate students, review all paperwork, discuss all simulation 
results, and prepare the progress report.  

mailto:qwang@tamu.edu
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Project Activities with External Partners: 

Dr. Wang officially participated in the ongoing Skylark Joint Industry Project (JIP), led by 
DNV and UK HSE. On December 6, 2023, Dr. Wang officially submitted a statement of work, 
along with a budget and budget justification, to PHMSA for their consideration in joining the 
Skylark JIP. The extension of this work to continue with Skylark is still waiting for the official 
approval from PHMSA.  

 

Potential Project Risks: 

For the parametric study using Ansys Fluent, incorporating terrain information has increased the 
computation time. We have performed hundreds of CFD simulations which require a significant 
amount of time. With two PhD students working on this project, the simulations are successfully 
done along with the initial machine learning models. 

 

Future Project Work: 

• The future work is to study the evacuation time for appointed distance from the release 
point. Therefore, the emergency response plan can be organized accordingly to ensure the 
safety of the communities nearby. 

• Conduct near-field simulations with the application of UDFs and UDRGMs in Ansys 
Fluent. 

• Develop a web-based tool to determine the PIR for CO2 pipelines and evacuation time for 
the surrounding public. 

 

Potential Impacts to Pipeline Safety: 

• The variables for pipeline characteristics and weather conditions cover the upper limits 
and lower limits of the current industrial practices; therefore, the machine-learning model 
is believed to have accurate predictions for other CO2 pipelines in the range. 
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Appendix 
 
1. Time to reach the steady state 

The computational fluid dynamics simulations were performed at steady state. According to the 
discussions with the CO2 pipeline operators, incidents involving CO2 release from pipelines 
normally experience a discharge for about of 20 to 30 minutes. This study is to check the amount 
of time needed to reach the steady state.  
 
To understand the time to reach steady state, a transient case with 0.1 s time step was conducted. 
The case with the farthest dispersion was used and the corresponding parameters are enumerated 
in Table 1. According to the simulation (Figure 1), the concentrations of 1%, 4%, and 9% reach 
steady state around 500, 180, and 80 seconds, which are much shorter than 20 minutes. Thus, 
simulations based on the steady state are rational. 
 

Table 1. Parameters applied for study. 

Variable Pressure 
(MPa) 

Diameter 
(inch) 

Flow rate 
(MMcfd) 

Wind speed 
(mph) 

Temperature  
(°F) 

Value 10 30 1300 25 60 
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Figure 1. Distances of CO2 concentration versus time: (a) 9%, (b) 4%, and (c) 1%. 
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2. Machine learning models to predict PIRs 

Because the distribution of the distances for the three different concentrations are quite 
divergent, we built three distinct models for each of them. The machine learning models applied 
for searching for the best model are multiple linear regression (MLR), Support Vector 
Regression (SVR), K nearest neighbors (KNN), random forest (RF), extreme gradient boosting 
regression (XGBoost), gradient boosting regression (GBR), and Bootstrap Aggregating 
(Bagging). R2 with the 10-fold cross validation were used to search for the best model and to 
evaluate the performance of the models. In each model, the input (features) for the models are 
gauge pressure, diameter of pipeline, flow rate of CO2, wind speed, and ambient temperature, 
and the output (response) is the corresponding distances from simulation.  
 
With the random search of hyperparameters for each model, which is believed to be more 
efficient way to find the best model, the best version of each machine learning model is 
demonstrated in Tables 2-6. The predictions for 10-fold cross validations results are as Figure 2 
to Figure 6. All the models hold higher than 0.93 on R2, which represents high accuracy on 
prediction. 
 
It is noted that the R-squared value represents the proportion of variance in the actual values that 
is explained by the model's predictions. An R-squared value of 1 indicates a perfect fit, where the 
predicted values exactly match the actual values. In this project, 10-fold cross-validation was 
used to optimize the model's hyperparameters and evaluate its performance. For each model, the 
R-squared was calculated by comparing the predicted and actual values across each fold, and the 
average R-squared from the 10 folds was computed to represent the model's overall performance. 
Even the worst-performing model among the 15 best models for each terrain of each 
concentration explained 93% of the variance, indicating a high degree of predictive accuracy, 
with many of them being very close to 1. 
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Table 2. Performance for each fine-tuned machine learning model for Flat. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9665 0.0384 
Bagging 0.9691 0.0301 

Random Forest 0.9688 0.0300 
XGBoost 0.9782 0.0286 

K nearest neighbors 0.6703 0.1188 
Multiple Linear Regression 0.4806 0.1564 
Support Vector Regression 0.7775 0.0939 

4 

Gradient Boosting 0.9635 0.0270 
Bagging 0.9600 0.0355 

Random Forest 0.9604 0.0352 
XGBoost 0.9690 0.0453 

K nearest neighbors 0.7520 0.1533 
Multiple Linear Regression 0.5468 0.1470 
Support Vector Regression 0.7869 0.1187 

1 

Gradient Boosting 0.9849 0.0125 
Bagging 0.9833 0.0119 

Random Forest 0.9836 0.0105 
XGBoost 0.9886 0.0112 

K nearest neighbors 0.9242 0.0393 
Multiple Linear Regression 0.7943 0.0795 
Support Vector Regression 0.9236 0.0333 
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Table 3. Performance for each fine-tuned machine learning model for SH. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9830 0.0348 
Bagging 0.9804 0.0124 

Random Forest 0.9806 0.0122 
XGBoost 0.9918 0.0093 

K nearest neighbors 0.6650 0.1575 
Multiple Linear Regression 0.4114 0.2990 
Support Vector Regression 0.7682 0.1172 

4 

Gradient Boosting 0.9672 0.0213 
Bagging 0.9663 0.0282 

Random Forest 0.9665 0.0251 
XGBoost 0.9700 0.0346 

K nearest neighbors 0.7345 0.1029 
Multiple Linear Regression 0.4470 0.1690 
Support Vector Regression 0.7738 0.0767 

1 

Gradient Boosting 0.9940 0.0039 
Bagging 0.9917 0.0043 

Random Forest 0.9918 0.0048 
XGBoost 0.9950 0.0026 

K nearest neighbors 0.9474 0.0263 
Multiple Linear Regression 0.7764 0.0841 
Support Vector Regression 0.9490 0.0292 
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Table 4. Performance for each fine-tuned machine learning model for BH. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9875 0.0079 
Bagging 0.9794 0.0109 

Random Forest 0.9795 0.0110 
XGBoost 0.9878 0.0075 

K nearest neighbors 0.6632 0.0999 
Multiple Linear Regression 0.5376 0.1397 
Support Vector Regression 0.7669 0.0921 

4 

Gradient Boosting 0.9301 0.0409 
Bagging 0.9272 0.0698 

Random Forest 0.9301 0.0629 
XGBoost 0.9288 0.0545 

K nearest neighbors 0.6416 0.1877 
Multiple Linear Regression 0.2711 0.3867 
Support Vector Regression 0.7174 0.1020 

1 

Gradient Boosting 0.9605 0.0237 
Bagging 0.9566 0.0293 

Random Forest 0.9575 0.0271 
XGBoost 0.9627 0.0210 

K nearest neighbors 0.7759 0.1128 
Multiple Linear Regression 0.5947 0.1612 
Support Vector Regression 0.8121 0.0556 
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Table 5. Performance for each fine-tuned machine learning model for VM. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9618 0.0364 
Bagging 0.9567 0.0298 

Random Forest 0.9574 0.0242 
XGBoost 0.9725 0.0220 

K nearest neighbors 0.6552 0.1310 
Multiple Linear Regression 0.4830 0.1194 
Support Vector Regression 0.7775 0.1117 

4 

Gradient Boosting 0.9160 0.0592 
Bagging 0.9232 0.0656 

Random Forest 0.9244 0.0624 
XGBoost 0.9330 0.0896 

K nearest neighbors 0.6489 0.1178 
Multiple Linear Regression 0.3963 0.0786 
Support Vector Regression 0.6946 0.1359 

1 

Gradient Boosting 0.9907 0.0092 
Bagging 0.9801 0.0091 

Random Forest 0.9801 0.0086 
XGBoost 0.9930 0.0054 

K nearest neighbors 0.8853 0.0364 
Multiple Linear Regression 0.7816 0.0701 
Support Vector Regression 0.8801 0.0260 
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Table 6. Performance for each fine-tuned machine learning model for VB. 

CO2 concentration (%) Model R2 SD 

9 

Gradient Boosting 0.9656 0.0176 
Bagging 0.9713 0.0225 

Random Forest 0.9714 0.0228 
XGBoost 0.9762 0.0238 

K nearest neighbors 0.7500 0.1345 
Multiple Linear Regression 0.5813 0.1287 
Support Vector Regression 0.8231 0.1026 

4 

Gradient Boosting 0.9428 0.0444 
Bagging 0.9462 0.0345 

Random Forest 0.9480 0.0326 
XGBoost 0.9626 0.0264 

K nearest neighbors 0.7567 0.1161 
Multiple Linear Regression 0.4461 0.1998 
Support Vector Regression 0.7800 0.0954 

1 

Gradient Boosting 0.9942 0.0044 
Bagging 0.9859 0.0047 

Random Forest 0.9861 0.0047 
XGBoost 0.9952 0.0028 

K nearest neighbors 0.8901 0.0305 
Multiple Linear Regression 0.7897 0.0968 
Support Vector Regression 0.8940 0.0269 



 

11 [Determination of Potential Impact Radius for CO2 Pipelines using Machine Learning Approach] 

 

Figure 2. Actual vs. Predicted Values (10-fold cross validation) for Flat: (a) Distance for 9% 
CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 3. Actual vs. Predicted Values (10-fold cross validation) for SH: (a) Distance for 9% CO2, 
(b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 4. Actual vs. Predicted Values (10-fold cross validation) for BH: (a) Distance for 9% 
CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 5. Actual vs. Predicted Values (10-fold cross validation) for VM: (a) Distance for 9% 
CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 
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Figure 6. Actual vs. Predicted Values (10-fold cross validation) for VB: (a) Distance for 9% 
CO2, (b) Distance for 4% CO2, and (c) Distance for 1% CO2. 

 


